博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Binder学习笔记(四)—— ServiceManager如何响应checkService请求
阅读量:5075 次
发布时间:2019-06-12

本文共 13134 字,大约阅读时间需要 43 分钟。

这要从frameworks/native/cmds/servicemanager/service_manager.c:347的main函数说起,该文件编译后生成servicemanager。

int main(int argc, char **argv){    struct binder_state *bs;    bs = binder_open(128*1024);  // 打开/dev/binder文件,并映射到内存      if (!bs) {        ALOGE("failed to open binder driver\n");        return -1;    }    //向/dev/binder写入BINDER_SET_CONTEXT_MGR命令    if (binder_become_context_manager(bs)) {         ALOGE("cannot become context manager (%s)\n", strerror(errno));        return -1;    }    selinux_enabled = is_selinux_enabled();    sehandle = selinux_android_service_context_handle();    selinux_status_open(true);    if (selinux_enabled > 0) {        if (sehandle == NULL) {            ALOGE("SELinux: Failed to acquire sehandle. Aborting.\n");            abort();        }        if (getcon(&service_manager_context) != 0) {            ALOGE("SELinux: Failed to acquire service_manager context. Aborting.\n");            abort();        }    }    union selinux_callback cb;    cb.func_audit = audit_callback;    selinux_set_callback(SELINUX_CB_AUDIT, cb);    cb.func_log = selinux_log_callback;    selinux_set_callback(SELINUX_CB_LOG, cb);    binder_loop(bs, svcmgr_handler);    return 0;}

接下来遇到se_xxx相关的数据结构和函数,未来我们还会遇到。他们是Android系统提供的安全机制,负责管理对资源的安全访问控制,通常只是回答某个资源是否有权限访问,而不会干涉业务逻辑,因此我们可以完全忽略。重点在binder_loop(…),如下:

frameworks/native/cmds/servicemanager/binder.c:372

void binder_loop(struct binder_state *bs, binder_handler func){    int res;    struct binder_write_read bwr;    uint32_t readbuf[32];    bwr.write_size = 0;    bwr.write_consumed = 0;    bwr.write_buffer = 0;    readbuf[0] = BC_ENTER_LOOPER;    binder_write(bs, readbuf, sizeof(uint32_t));    for (;;) {        bwr.read_size = sizeof(readbuf);        bwr.read_consumed = 0;        bwr.read_buffer = (uintptr_t) readbuf;        res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);if (res < 0) {            ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));            break;        }        res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);if (res == 0) {            ALOGE("binder_loop: unexpected reply?!\n");            break;        }        if (res < 0) {            ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));            break;        }    }}

它循环向/dev/binder读写内容,然后对读到的数据做解析,再深入binder_parse(…)

frameworks/native/cmds/servicemanager/binder.c:204

int binder_parse(struct binder_state *bs, struct binder_io *bio,                 uintptr_t ptr, size_t size, binder_handler func){    int r = 1;    uintptr_t end = ptr + (uintptr_t) size;    while (ptr < end) {        uint32_t cmd = *(uint32_t *) ptr;        ptr += sizeof(uint32_t);#if TRACE        fprintf(stderr,"%s:\n", cmd_name(cmd));#endif        switch(cmd) {        case BR_NOOP:            break;        case BR_TRANSACTION_COMPLETE:            break;        case BR_INCREFS:        case BR_ACQUIRE:        case BR_RELEASE:        case BR_DECREFS:#if TRACE            fprintf(stderr,"  %p, %p\n", (void *)ptr, (void *)(ptr + sizeof(void *)));#endif            ptr += sizeof(struct binder_ptr_cookie);            break;        case BR_TRANSACTION: {            struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;            if ((end - ptr) < sizeof(*txn)) {                ALOGE("parse: txn too small!\n");                return -1;            }            binder_dump_txn(txn);            if (func) {                unsigned rdata[256/4];                struct binder_io msg;                struct binder_io reply;                int res;                bio_init(&reply, rdata, sizeof(rdata), 4);                bio_init_from_txn(&msg, txn);                res = func(bs, txn, &msg, &reply);                binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);            }            ptr += sizeof(*txn);            break;        }        case BR_REPLY: {            struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;            if ((end - ptr) < sizeof(*txn)) {                ALOGE("parse: reply too small!\n");                return -1;            }            binder_dump_txn(txn);            if (bio) {                bio_init_from_txn(bio, txn);                bio = 0;            } else {                /* todo FREE BUFFER */            }            ptr += sizeof(*txn);            r = 0;            break;        }        case BR_DEAD_BINDER: {            struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr;            ptr += sizeof(binder_uintptr_t);            death->func(bs, death->ptr);            break;        }        case BR_FAILED_REPLY:            r = -1;            break;        case BR_DEAD_REPLY:            r = -1;            break;        default:            ALOGE("parse: OOPS %d\n", cmd);            return -1;        }    }    return r;}

重点在case BR_TRANSACTION里,它接收到的txn正是客户端发出的tr。首先初始化好reply数据结构

然后初始化msg,其中蓝色部分是客户端组织的数据,红色部分是ServiceManager端组织的数据:

接下来执行func(…),这是一个函数指针,通过参数传进来,向上追溯binder_loop(…) – main(…)找到该函数指针的实参是svcmgr_handler

frameworks/native/cmds/servicemanager/service_manager.c:244

int svcmgr_handler(struct binder_state *bs,                   struct binder_transaction_data *txn,                   struct binder_io *msg,                   struct binder_io *reply){    struct svcinfo *si;    uint16_t *s;    size_t len;    uint32_t handle;    uint32_t strict_policy;    int allow_isolated;    //ALOGI("target=%p code=%d pid=%d uid=%d\n",    //      (void*) txn->target.ptr, txn->code, txn->sender_pid, txn->sender_euid);    if (txn->target.ptr != BINDER_SERVICE_MANAGER)        return -1;    if (txn->code == PING_TRANSACTION)        return 0;    // Equivalent to Parcel::enforceInterface(), reading the RPC    // header with the strict mode policy mask and the interface name.    // Note that we ignore the strict_policy and don't propagate it// further (since we do no outbound RPCs anyway).// 从客户端发来的Parcel数据中取出InterfaceToken    strict_policy = bio_get_uint32(msg);    s = bio_get_string16(msg, &len);    if (s == NULL) {        return -1;    }    // svcmgr_id就是android.os.IserviceManager,定义在service_manager.c:164    if ((len != (sizeof(svcmgr_id) / 2)) ||        memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {        fprintf(stderr,"invalid id %s\n", str8(s, len));        return -1;    }    if (sehandle && selinux_status_updated() > 0) {        struct selabel_handle *tmp_sehandle = selinux_android_service_context_handle();        if (tmp_sehandle) {            selabel_close(sehandle);            sehandle = tmp_sehandle;        }    }    switch(txn->code) {    case SVC_MGR_GET_SERVICE:    case SVC_MGR_CHECK_SERVICE:        s = bio_get_string16(msg, &len);  // 取出Parcel中的"service.testservice"字串        if (s == NULL) {            return -1;        }        handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid);        if (!handle)            break;        bio_put_ref(reply, handle);        return 0;    case SVC_MGR_ADD_SERVICE:        s = bio_get_string16(msg, &len);        if (s == NULL) {            return -1;        }        handle = bio_get_ref(msg);        allow_isolated = bio_get_uint32(msg) ? 1 : 0;        if (do_add_service(bs, s, len, handle, txn->sender_euid,            allow_isolated, txn->sender_pid))            return -1;        break;    case SVC_MGR_LIST_SERVICES: {        uint32_t n = bio_get_uint32(msg);        if (!svc_can_list(txn->sender_pid)) {            ALOGE("list_service() uid=%d - PERMISSION DENIED\n",                    txn->sender_euid);            return -1;        }        si = svclist;        while ((n-- > 0) && si)            si = si->next;        if (si) {            bio_put_string16(reply, si->name);            return 0;        }        return -1;    }    default:        ALOGE("unknown code %d\n", txn->code);        return -1;    }    bio_put_uint32(reply, 0);    return 0;}

继续找do_find_service(…),frameworks/native/cmds/servicemanager/service_manager.c:170

uint32_t do_find_service(struct binder_state *bs, const uint16_t *s, size_t len, uid_t uid, pid_t spid){    struct svcinfo *si = find_svc(s, len); // 重点在这里    if (!si || !si->handle) {        return 0;    }    if (!si->allow_isolated) {        // If this service doesn't allow access from isolated processes,        // then check the uid to see if it is isolated.        uid_t appid = uid % AID_USER;        if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) {            return 0;        }    }    if (!svc_can_find(s, len, spid)) {        return 0;    }    return si->handle;}

再到frameworks/native/cmds/servicemanager/service_manager.c:140

struct svcinfo *find_svc(const uint16_t *s16, size_t len){    struct svcinfo *si;    for (si = svclist; si; si = si->next) {        if ((len == si->len) &&            !memcmp(s16, si->name, len * sizeof(uint16_t))) {            return si;        }    }    return NULL;}

终于找到了尽头,svclist是一个链表,ServiceManager在收到checkService请求后,根据service name遍历svclist,返回命中的节点。之后再一路回到调用的原点:find_svc -> do_find_service,在这里它返回的是节点的handle成员变量。节点的数据类型定义在frameworks/native/cmds/servicemanager/service_manager.c:128

struct svcinfo{    struct svcinfo *next;    uint32_t handle;    struct binder_death death;    int allow_isolated;    size_t len;    uint16_t name[0];};

从数据类型上来看,我们只能知道handle是一个整形数字,它是怎么来的?肯定是服务端先来这里注册的,然后ServiceManager把节点中的信息缓存到svclist链表里去,等待客户端过来请求,就把handle返回给客户端。

继续向调用原点返回,从do_find_service –> svcmgr_handle

frameworks/native/cmds/servicemanager/service_manager.c:296

handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid);        if (!handle)            break;        bio_put_ref(reply, handle);        return 0;

svcmgr_handle得到handle后,调用bio_put_ref把它塞到reply里。然后svcmgr_handle -> binder_parse,后者调用binder_send_reply把reply发送出去。这样ServiceManager就完成了一次checkService的响应。

不过还是有一些细节需要弄清楚,我们先回到svcmgr_handle的bio_put_ref(…)函数,看看他是怎么组织reply的,frameworks/native/cmds/servicemanager/binder.c:505

void bio_put_ref(struct binder_io *bio, uint32_t handle){    struct flat_binder_object *obj;    if (handle)        obj = bio_alloc_obj(bio);    else        obj = bio_alloc(bio, sizeof(*obj));    if (!obj)        return;    obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;    obj->type = BINDER_TYPE_HANDLE;    obj->handle = handle;    obj->cookie = 0;}

还记得reply吧?上文在干活之前给它初始化成这样:

接下来进入bio_alloc_obj(…),frameworks/native/cmds/servicemanager/binder.c:468

static struct flat_binder_object *bio_alloc_obj(struct binder_io *bio){    struct flat_binder_object *obj;    obj = bio_alloc(bio, sizeof(*obj));    if (obj && bio->offs_avail) {        bio->offs_avail--; // 它记录offs区域还有多少容量        // offs区域是一个size_t型数组,每个元素记录data区域中object相对于data0的偏移        *bio->offs++ = ((char*) obj) - ((char*) bio->data0);         return obj;    }    bio->flags |= BIO_F_OVERFLOW;    return NULL;}

继续到bio_alloc(…),frameworks/native/cmds/servicemanager/binder.c:437

static void *bio_alloc(struct binder_io *bio, size_t size){   // size=sizeof(flat_binder_object)    size = (size + 3) & (~3);    if (size > bio->data_avail) {  // 溢出判断        bio->flags |= BIO_F_OVERFLOW;        return NULL;    } else {  // 主干在这,原来是从bio->data中分配出的空间        void *ptr = bio->data;        bio->data += size;        bio->data_avail -= size;        return ptr;    }}

到bio_put_ref(…)函数返回时,他组织成的数据结构如下,我把被修改过的成员标橙色了:

binder_io只是一个数据索引,具体的数据是放在rdata中的,rdata又分两个区域:1、object指针索引区;2、数据区。数据区存放有基本数据类型,如int、string;也有抽象数据类型,如flat_binder_object。object指针索引区记录数据区中每一个抽象数据类型的偏移量。binder_io则记录rdata区域每个部分的起始位置、当前栈顶位置和所剩空间。

svcmgr_handle(…)调用bio_put_ref(…)组织完reply数据之后就返回到binder_parser(…),然后调用binder_sendbinder_parse_raply(…)

frameworks/native/cmds/servicemanager/binder.c:245

res = func(bs, txn, &msg, &reply);                binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);

svcmgr_handle的返回值res为0,表示成功,该值被传入binder_send_reply(…)。一并被传入的还有txn的数据成员data.ptr.buffer,这是从客户端发来的请求数据,继续进入函数

frameworks/native/cmds/servicemanager/binder.c:170

void binder_send_reply(struct binder_state *bs,                       struct binder_io *reply,                       binder_uintptr_t buffer_to_free,                       int status){   // status=0    struct {        uint32_t cmd_free;        binder_uintptr_t buffer;        uint32_t cmd_reply;        struct binder_transaction_data txn;    } __attribute__((packed)) data;    data.cmd_free = BC_FREE_BUFFER;    data.buffer = buffer_to_free;    data.cmd_reply = BC_REPLY;    data.txn.target.ptr = 0;    data.txn.cookie = 0;    data.txn.code = 0;    if (status) {        data.txn.flags = TF_STATUS_CODE;        data.txn.data_size = sizeof(int);        data.txn.offsets_size = 0;        data.txn.data.ptr.buffer = (uintptr_t)&status;        data.txn.data.ptr.offsets = 0;    } else {        data.txn.flags = 0;        data.txn.data_size = reply->data - reply->data0;        data.txn.offsets_size = ((char*) reply->offs) - ((char*) reply->offs0);        data.txn.data.ptr.buffer = (uintptr_t)reply->data0;        data.txn.data.ptr.offsets = (uintptr_t)reply->offs0;    }    binder_write(bs, &data, sizeof(data));}

这是在组织完整的响应数据。把完整的数据描绘出来如下,真是一盘大棋!客户端组织的数据用蓝色标出,ServiceManager组织的数据用红色标出。从图上可以清晰地看出原来reply并没有打到响应数据包里,只是作中间缓存之用。

 

转载于:https://www.cnblogs.com/palance/p/5468390.html

你可能感兴趣的文章